Role of macrophages in disease development and progression

Frank Tacke

3rd Paris NASH Symposium
July 6, 2017
Disclosures Frank Tacke

• Research support (materials, funding):
 Tobira/Allergan (CVC), Noxxon (mNOX-E36), Galapagos

• Speaker/Advisory Board:
 Tobira/Allergan, Gilead, AbbVie, BMS, Boehringer, Galapagos, Intercept, Falk, Inventiva
Macrophage accumulation is a hallmark of progressive non-alcoholic steatohepatitis

Baeck C / Tacke F. Hepatology 2014
Ehling J / Tacke F. Gut 2014
Wehr A / Tacke F. J Immunol 2013
Baeck C / Tacke F. Gut 2012
Karlmark KR / Tacke F. Hepatology 2009
Tacke F / Randolph GJ. J Clin Invest 2007
Monocyte / macrophage heterogeneity in liver inflammation, fibrosis and cancer

Origin
homeostasis vs. inflammation

- Scott CL / Guillas M. *Nat Commun* 2016
- Wang J, Kubes P. *Cell.* 2016

Differentiation
microenvironmental signals shape phenotype

- Xue J / Schultze J. *Immunity* 2014
- Beattie J / Kane PM. *J Hepatol* 2016
- Bartneck M / Tacke F. *Hepatology* 2016

Function regarding liver injury
pro-inflammatory (can) develop into restorative macrophages

- Ramachandran P / Iredale JP. *PNAS* 2012
- Baeck C / Tacke F. *Hepatology* 2014

Monocytes

- Ly6C\(^{hi}\)
- Ly6C\(^{lo}\)

Macrophages

- „M1 polarization“
 - inflammation ↑
 - tumor ↓

- „M2 polarization“
 - inflammation ↓
 - remodelling ↑
 - tumor ↑

Kupffer cells
Monocytes and macrophages in liver diseases

- Acute liver injury
- NASH and fibrosis
- Immunometabolism
Cell Death triggers immune cell homing: acetaminophen injury

Acetaminophen (APAP) 7mg/ml on primary mouse hepatocytes
Role of infiltrating monocytes: acetaminophen induced acute liver injury

Role of infiltrating monocytes: acetaminophen induced acute liver injury

Monocytic and macrophage populations in experimental liver injury

intravital multiphoton-microscopy

Analyses of migration and cell-cell-interactions in real-time *in vivo*

Heymann F / Tacke F. *Hepatology* 2015
Heymann F / Tacke F. *J Vis Exp* 2015
CCR2\(^+\) inflammatory monocyte recruitment after acetaminophen overdose

- progressive accumulation of CCR2\(^+\) monocytes at 9-12h after APAP injury

Mossanen JC, Krenkel O / Tacke F. *Hepatology* 2016; 64(5):1667-1682
CCR2\(^+\) inflammatory monocyte recruitment after acetaminophen overdose

- progressive accumulation of CCR2\(^+\) monocytes at 9-12h after APAP injury

Mossanen JC, Krenkel O / Tacke F. Hepatology 2016; 64(5):1667-1682
Ccr2\(^{-/-}\) mice are protected in the early phase of acetaminophen induced liver injury

Monocyte-derived Macrophages (MoMF) Kupffer Cells (KC)

Mossanen JC, Krenkel O / Tacke F. Hepatology 2016; 64(5):1667-1682
CCR2⁺ monocyte-derived macrophages have an inflammatory phenotype

Mossanen JC, Krenkel O / Tacke F. *Hepatology* 2016; 64(5):1667-1682
Inflammatory CCR2+ macrophages in human acetaminophen acute liver failure

Mossanen JC, Krenkel O / Tacke F. Hepatology 2016; 64(5):1667-1682

similar data by Antoniades CG / Wendon J. Hepatology 2012; 56(2):735-46
Monocytes and macrophages in liver diseases

• Acute liver injury
• NASH and fibrosis
• Immunometabolism
Monocyte / macrophage subsets during regression of liver fibrosis

Krenkel O & Tacke F. Nat Rev Immunol 2017
Monocyte / macrophage subsets during regression of liver fibrosis

Krenkel O & Tacke F. Nat Rev Immunol 2017
Chemokine receptor CCR2/5-inhibitor CVC in experimental NASH and fibrosis

Mouse model of NASH (MCD)

liver macrophages reduced

Liver Leukocytes [%]

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>8w MCD</th>
<th>Vhc.</th>
<th>CVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WT</th>
<th>8w MCD</th>
<th>Vhc.</th>
<th>CVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

liver fibrosis reduced

Sirius Red [%]

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>8w MCD</th>
<th>Vhc.</th>
<th>CVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WT</th>
<th>8w MCD</th>
<th>Vhc.</th>
<th>CVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.5</td>
<td>2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Clinical trial phase 2b (ongoing)

Patients with NASH + fibrosis (n=289) enriched for co-morbidities

CVC 150mg (n=145) vs Placebo (n=144)

Liver biopsy after 1 year

CVC 150mg (n=145) vs CVC 150 (n>63) vs Placebo (n>63)

Liver biopsy after 2 years

Püngel T, Krenkel O, Tacke F. EASL 2016

NCT02217475; EudraCT number 2014-003164-21; Sponsor: Tobira / Allergan
Chemokine receptor CCR2/5-inhibitor CVC in experimental NASH and fibrosis

Mouse model of NASH (MCD)

Liver macrophages reduced

Liver Leukocytes [%]

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>8w MCD</th>
<th>Vhc</th>
<th>CVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>ns*</td>
<td>***</td>
<td>ns</td>
</tr>
</tbody>
</table>

Liver fibrosis reduced

Sirius Red [%]

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>8w MCD</th>
<th>Vhc</th>
<th>CVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>ns</td>
</tr>
<tr>
<td>1.0</td>
<td>1.5</td>
<td>****</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

clinical trial phase 2b (ongoing)

patients with NASH + fibrosis (n=289) enriched for co-morbidities

- CVC 150mg (n=145)
- Placebo (n=144)

liver biopsy after 1 year

interim analysis after 1 year treatment:
- 126 + 126 sufficient paired biopsies
- baseline characteristics:
 - 33% F1, 29% F2, 38% F3 fibrosis
 - 52% type 2 diabetes, BMI ~34 kg/m²

Sanyal A et al. #LB-1, AASLD 2016

Sponsor: Tobira / Allergan
Chemokine receptor CCR2/5-inhibitor CVC in patients with NASH and fibrosis

Steatohepatitis-Score

Placebo (N=144) CVC (N=145)

0% 5% 10% 15% 20% 25%
19% 16%

≥2-point Improvement in NAS AND No Worsening of Fibrosis

Fibrosis-Score

0% 5% 10% 15% 20% 25%
10% 20%

Improvement in Fibrosis Stage AND No Worsening of NASH

P = 0.0234

NASH resolution: 8% vs. 6% (n.s.)

Sanyal AJ, et al. AASLD 2016, #LB-1
Chemokine receptor CCR2/5-inhibitor CVC in patients with NASH and fibrosis

Response by Baseline Fibrosis Stage (mITT)

Sanyal AJ, et al. AASLD 2016, #LB-1
Monocyte / macrophage subsets during regression of liver fibrosis

Can we therapeutically provoke this phenotypic switch?

- **Inflammatory** Ly6Chigh monocyte
- **Fibrogenic** Ly6C+ macrophage
- **Restorative** Ly6Clow macrophage

- PDGF, TGF\(\beta\), TNF, IL-1\(\beta\)
- TRAIL, MMP9/12/13

- Hepatic stellate cell (HSC)
- Activated HSC (myofibroblast)
- Reverted HSC

- Extracellular matrix (ECM)

References:
- Krenkel O & Tacke F. *Nat Rev Immunol* 2017
Targeting macrophages in liver inflammation and fibrosis

Microbubbles Liposomes Polymers

CT+Seg.

CT+FMT

Liver

Ergen C / Lammers T / Tacke F. Biomaterials 2017
Targeting macrophages in liver inflammation: Drug delivery systems

Liposomes i.v.

blue: Kupffer cells

Microbubbles

Kupffer cells

Monocyte-derived macrophages

Liposomes

Polymers

Ergen C / Lammers T / Tacke F. Biomaterials 2017
Targeting macrophages in liver inflammation: *Proof-of-concept* in fibrosis

Dexamethasone-loaded Liposomes

Bartneck M / Tacke F, *Nanomedicine* 2014
Bartneck M / Tacke F, *Biomaterials* 2015
Topuz F / Tacke F, *Biomacromolecules* 2017
Monocytes and macrophages in liver diseases

- Acute liver injury
- NASH and fibrosis
- Immunometabolism
Immunometabolism 1: Integration of metabolic signals by macrophages

Immunometabolism 2: Adaptation of cellular metabolism by macrophages

Manifold potential targets...
- PPAR α / γ / δ
- ASK1

Macrophage metabolism upon activation

Macrophage metabolism in homeostasis

- NF-κB activation
- glycolysis
- ROS and NO production
- distinct transcription factors
- inflammasome formation
- cytokine production

Krenkel O & Tacke F. Seminars Liver Disease 2017 (in press)
Thank you!

Tacke Lab
Dr. Jana Mossanen
Dr. Felix Heymann
Dr. Matthias Bartneck
Dr. Anke Liepelt
Dr. Alexander Wehr
Elham Shirvani-Dastgerdi
Patricia Niemietz
Klaudia Warzecha
Julia Peusquens
Oliver Krenkel
Aline Roggenkamp
Tobias Püngel
Peter Schrammen
Can Ergen
Marlene Kohlhepp

Q3 cell isolation
Sibille Sauer-Lehnen
Carmen Tag

collaborators Aachen
Tom Lüdde
Christian Trautwein
Thomas Longerich
Ralf Weiskirchen
Ulf Neumann

collaborators
Tania Roskams
Olivier Govaere
Quentin Anstee
Eric Lefebvre
Florent Ginhoux
Steffen Jung
Jo van Ginderachter
Gwen Randolph

Funding
Industry (Noxxon, Tobira/Allergan)
Role of macrophages in disease development and progression of NASH

- **Monocyte and macrophage subsets** impact inflammation, hepatocyte injury, hepatic stellate cell activation, angiogenesis, but also resolution of injury, in mice and men

- Hepatic **macrophage heterogeneity** in includes origin, differentiation/ polarization, immunological properties and functions in disease progression/regression

- Therapeutic application of the **CCR2/CCR5 inhibitor CVC** in mice ameliorates steatohepatitis and fibrosis without impairing tissue repair, supporting the therapeutic potential in patients with NASH

- **Important lines of research** in the field: regulation and balance of pro- and antiinflammatory subsets, novel **imaging** approaches to dissect immune cell subsets, immune mechanisms in transition from chronic inflammation to **cancer**, targeting mechanisms by **nanoparticles**, **translation** into clinics (biomarkers + therapy)