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Human genetics may provide “blueprints” for therapeutic development 

Plenge et al. Nature Reviews Drug Discovery 2013; Cook et al. 
Nature Reviews Drug Discovery 2014; Nelson et al. Nat Genet 2015
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“Pharmaco-mimetic” genetic variants• Naturally-occurring human genetic variants that 
activate or inactivate a target gene may be helpful 
“proxies” for pharmacological modulation.

• Studying their phenotypic associations in large 
datasets may inform on therapeutic efficacy and 
safety in humans.
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Solution: Exome sequencing!  

Identification of rare coding variants:
1. Helps pinpoint causal genes with high confidence
2. Helps clarify directionality of association
3. Large-effect coding variant associations may 

accelerate translation to biological insight  (i.e. PCSK9, 
ANGPTL3/4, APOC3 etc)

4. Can identify associations not easily found via other 
approaches

BUT: Needs HUGE sample size!
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RGC’s commitment to exome sequencing 
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Nonalcoholic liver disease is a common metabolic disease with high global prevalence

Younossi et al, Hepatology, 2018 
(NAFLD prevalence estimates from meta-analyses including 8.5M individuals)

1 in 4 people worldwide have NAFLD

Nonalcoholic fatty liver disease (NAFLD)

• Common, chronic disease characterized by the accumulation of fat 
in the liver in the absence of alcohol abuse

• Higher risk of cirrhosis and hepatic failure, heart disease
• Strongly associated with obesity and fat distribution, insulin 

resistance and diabetes
• NO approved therapies as of end of 2022 in US/EU in spite of 

numerous therapeutic development efforts

Fibrosis score

NAFLD activity score

Components Score Extent

Steatosis

0 <5%

1 5-33%

2 33-66%

3 >66%

Hepatocyte 
Ballooning

0 None

1 Few balloon cells

2 Many balloon cells

Lobular 
Inflammation

0 No foci

1 <2 foci/200x

2 2-4 foci/200x

3 >4 foci/200x

Clinical severity, 
regulatory approval

Prevalence, 
reversibility

NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; HCC, 
hepatocellular carcinoma
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RGC & collaborators, Science, 2021

DOI: 10.1126/science.abf8683
RGC & collaborators, N Engl J Med 2022; 387:332-344

Staged multiancestry exome analysis of liver phenotypes identifies associations at 5 liver-expressed 
genes including a novel protective association for CIDEB mutations
Exome wide analysis of the burden of rare coding variants with ALT levels
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RGC & collaborators, Science, 2021

DOI: 10.1126/science.abf8683
RGC & collaborators, N Engl J Med 2022; 387:332-344

Staged multiancestry exome analysis of liver phenotypes identifies associations at 5 liver-expressed 
genes including a novel protective association for CIDEB mutations

CIDEB

Exome wide analysis of the burden of rare coding variants with alanine transferase levels

Circled genes: robustly associated with ALT, AST and any liver disease
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RGC & collaborators, Science, 2021

DOI: 10.1126/science.abf8683
RGC & collaborators, N Engl J Med 2022; 387:332-344

Staged multiancestry exome analysis of liver phenotypes identifies associations at 5 liver-expressed 
genes including a novel protective association for CIDEB mutations

CIDEB

Exome wide analysis of the burden of rare coding variants with alanine transferase levels

1.2 U/L lower alanine transaminase (ALT) levels (p=4.8×10-9)

33% lower odds of any liver disease (p=9.9×10-7)

50% lower odds of liver cirrhosis (p=4.4×10-5)

Carriers of rare heterozygous pLOF plus missense variants in 
CIDEB had on average:

Circled genes: associated with (1.) ALT levels AND (2.) AST levels AND (3.) any liver disease
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The protective associations for CIDEB mutations carriers reflect Loss of Function of CIDEB

RGC & collaborators, N Engl J Med 2022; 387:332-344

pLOF = predicted Loss of Function (e.g. protein truncating variants)

Association of CIDEB pLOF compared to pLOF and missense variants

Liver disease

ALT levels
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The protective associations for CIDEB mutations carriers reflect Loss of Function of CIDEB

RGC & collaborators, N Engl J Med 2022; 387:332-344

Approximately 1 in 150 persons (0.7%) carried a rare predicted loss of function or missense variant. 
99.3% individuals may benefit from CIDEB inhibition. 

Important for therapeutic development!

pLOF = predicted Loss of Function (e.g. protein truncating variants)

Association of CIDEB pLOF compared to pLOF and missense variants

Liver disease

ALT levels
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RGC & collaborators, N Engl J Med 2022; 387:332-344

Replication

Discovery

The association  between CIDEB and liver disease replicates in independent cohorts, and is 
consistent across cohorts and ancestry groups
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CIDEB is a structural protein of hepatic lipid droplets mediating droplet fusion and growth

RGC & collaborators, N Engl J Med 2022; 387:332-344

A patient with homozygous LOF of CIDEC, a member of the 
same family with high adipose expression,

results in familial partial lipodystrophy characterized by 
many adipocytes with multiple small lipid droplets

Rubio-Cabezas et al. EMBO MM 2009
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Knockdown of CIDEB in oleate-treated human hepatoma cells results in smaller lipid droplets 

Experiments by Giusy Della Gatta and Minhee Kim (RGC Biology) from RGC & collaborators, N Engl J Med 2022; 387:332-344; 
Other literature on CIDE proteins roles in lipid droplet size: Xu et al. JBC 2016; Chen et al. Traffic 2020; Li et al. Diabetes 2007; 

Nishino et al. JCI 2008; Singaravelu et al. BBRC 2013

Correlation between knockdown 
level and lipid droplet size using 
different siRNA in a HUH-7 cell 
experiment

Experimental results are in line 
with literature on role of CIDE 
proteins in lipid droplet fusion 
and growth
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The protective association for CIDEB mutation is amplified in individuals with higher BMI 
or carriers of the PNPLA3 Ile148Met allele

RGC & collaborators, N Engl J Med 2022; 387:332-344
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RGC & collaborators, N Engl J Med 2022; 387:332-344
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In comparison to the HSD17B13’s splice allele, CIDEB’s protective effect is much larger and 
protects against both steatosis and NASH/fibrosis (histology data).

RGC & collaborators, N Engl J Med 2022; 387:332-344

Association with lower NAFLD activity score in bariatric 
surgery patients, driven by lower steatosis *and* NASH odds
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Loss of CIDEB does not associate with other metabolic traits in humans, but does in mouse.

RGC & collaborators, N Engl J Med 2022; 387:332-344

No associations with lipids or anthropometric traits for human (mostly-heterozygous) carriers 

Nominal association with lower T2D risk
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Loss of CIDEB does not associate with other metabolic traits in humans, but does in mouse.

RGC & collaborators, N Engl J Med 2022; 387:332-344

No associations with lipids or anthropometric traits for human (mostly-heterozygous) carriers 

Lower circulating 
triglycerides

Protection from weight gain in high-fat diet 
(HFD) in CIDEB KO mouse

Lower liver triglycerides

Li et al. Diabetes 2007

Nominal association with lower T2D risk
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Conclusions

o We performed target identification in a high-unmet need therapeutic area where preclinical 
models have not been predictive

o Rare germline mutations in CIDEB confer substantial protection from liver damage and liver 
disease

o Build-up of lipid droplets mediated by CIDEB is a driver of human liver disease.

o The majority of individuals do not carry CIDEB mutations and might benefit most from inhibition

o We are pursuing siRNA approaches to CIDEB inhibition with our partner Alnylam

RGC & collaborators, N Engl J Med 2022; 387:332-344


